If it's not what You are looking for type in the equation solver your own equation and let us solve it.
64^-n=(1/8)^2n
We move all terms to the left:
64^-n-((1/8)^2n)=0
Domain of the equation: 8)^2n)!=0We add all the numbers together, and all the variables
n!=0/1
n!=0
n∈R
-n-((+1/8)^2n)+64^=0
We add all the numbers together, and all the variables
-1n-((+1/8)^2n)=0
We multiply all the terms by the denominator
-1n*8)^2n)-((+1=0
Wy multiply elements
-8n^2+1=0
a = -8; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-8)·1
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{2}}{2*-8}=\frac{0-4\sqrt{2}}{-16} =-\frac{4\sqrt{2}}{-16} =-\frac{\sqrt{2}}{-4} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{2}}{2*-8}=\frac{0+4\sqrt{2}}{-16} =\frac{4\sqrt{2}}{-16} =\frac{\sqrt{2}}{-4} $
| 4(4-5n)-2=-40+7n | | 64^n=32^2n | | 37+7m=5(3m+1) | | -1y-6=2y-18 | | 6=52.50−0.85n | | 4(2x-5)+10=3(x+5) | | 15/8+n=51/4 | | 7(x+3)-15=54 | | 2x+17=16+x+4 | | x^2-4x-154=0 | | -4(6-2x)-2=-66 | | 0.09x=27 | | c/2-10=-14 | | (5x-14)/(x-2)=5 | | 8p=23.20 | | 9t+10=76+3t | | -0.08x=5.6 | | x^2-10x-155=0 | | 8x-4.8=2x+2.4 | | 8d+7=52+3d | | -16h+14=3(5h-5) | | 10m-10=7m+23 | | 9+9n=7n-1 | | -(t/7)=1/15 | | 10e-1=e+71 | | 4x+2x=9-2x | | 4p+1=11+3p | | -3(-5x+6)-6=-114 | | 5v-9=47-3v | | 63v-3.6=21.6 | | 5x-15=x+1+2x+20 | | 400=p+0.08+8 |